Novel method for ultrashort laser pulse-width measurement based on self-diffraction effect.

نویسندگان

  • Peng Xi
  • Changhe Zhou
  • Enwen Dai
  • Liren Liu
چکیده

Previous pulse-width measurement methods for ultrashort laser pulses have broadly employed nonlinear effects; thus any of these previous methods may experience problems relating to nonlinear effects. Here we present a new pulse-width measuring method based on the linear selfdiffraction effect. Because the Talbot effect of a grating with ultrashort laser pulse illumination is different from that with continuous laser illumination, we are able to use this difference to obtain information about the pulse width. Three new techniques - the intensity integral technique, the intensity comparing ratio technique, and the two-dimensional structure technique - are introduced to make this method applicable. The method benefits from the simple structure of the Talbot effect and offers the possibility to extend the measurement of infrared and x-ray waves, for which currently used nonlinear methods do not work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation

Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...

متن کامل

Self-Referenced Spectral Interferometry for Femtosecond Pulse Characterization

Since its introduction in 2010, self-referenced spectral interferometry (SRSI) has turned out to be an analytical, sensitive, accurate, and fast method for characterizing the temporal profile of femtosecond pulses. We review the underlying principle and the recent progress in the field of SRSI. We present our experimental work on this method, including the development of self-diffraction (SD) e...

متن کامل

Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries

We recently introduced frequency-resolved optical gating (FROG), a technique for measuring the intensity and phase of an individual, arbitrary, ultrashort laser pulse. FROG can use almost any instantaneous optical nonlinearity, with the most common geometries being polarization gate, self-diffraction, and secondharmonic generation. The experimentally generated FROG trace is intuitive, visually ...

متن کامل

Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces.

Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse parti...

متن کامل

Generation of an ultra-short electrical pulse with width shorter than the excitation laser

We demonstrate experimentally a rare phenomenon that the width of an electrical response is shorter than that of the excitation laser. In this work, generation of an ultrashort electrical pulse is by a semi-insulating GaAs photoconductive semiconductor switch (PCSS) and the generated electrical pulse width is shorter than that of the excitation laser from diode laser. When the pulse width and e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 10 20  شماره 

صفحات  -

تاریخ انتشار 2002